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Figure 1: Architecture we use to predict target variables.
We vary 3 different encoders and use different prediction
heads to perform the downstream tasks.

Abstract
Tracking metadata is crucial for streaming ser-
vices to accurately recommend songs to listen-
ers and automatically compile playlists. Cur-
rently, metrics such as the acousticness, loud-
ness, and other musical attributes are collected
by crowdsourcing: users are asked to manually
input this information into forms. This can lead
to incomplete records of metadata. To standard-
ize this process, we develop an NLP system that
automatically predicts musical metadata about
a song only from its lyrics. We predict seven
different metrics: genre, mode, danceability,
energy, valence, tempo, and loudness. We find
that we can predict metrics such as danceability
and valence with high accuracy, but we can-
not predict attributes such as mode and tempo,
since these may be independent of the lyrics.
We also find that out of all the embedding mod-
els we use, the embeddings generated by BERT
are the best for these downstream tasks, which
we attribute to the necessity of tracking long-
term dependencies, which BERT achieves us-
ing attention mechanisms.

1 Introduction

Current streaming services, such as Spotify and
Apple Music among others, use song metadata to

tag tracks with properties such as genre, acoustics,
danceability, and more. Spotify metadata is often
crowd-sourced and manually inputted, leading to
oftentimes incomplete or missing information. In
response to this issue, we explore using NLP-based
methods to automatically assign song metadata to
tracks by analyzing the lyrical content of the song
to predict musical attributes. This would enable
streaming services to systematically assign these
metadata values to their tracks, without relying on
possibly inaccurate responses from users.

Currently, NLP-based classification schemes
based on song lyrics primarily focus on predict-
ing genre. Previous works approach genre classifi-
cation by applying various embedding techniques
such as Word2Vec with TFIDF, GloVe embeddings,
and BERT representations combined with deep
learning and RNN approaches.

However, genre classification is unique amongst
song metadata in that it is more easily predictable
given lyrics than other aspects of a song, which are
primarily auditory.

In this paper, we jointly approach genre classifi-
cation with predicting other attributes about a given
song, which is a relatively unexplored field. Using
the same song lyric embeddings, we apply several
different models to predict the following metadata
attributes: genre, mode, danceability, energy, va-
lence, tempo, and loudness. We can uncover trends
about the lyrical composition of songs using this
method, such as finding lyrics with high associa-
tion to danceability or musical composition (major
or minor key).

The remainder of this paper is structured as fol-
lows. Section 2 discusses related works already
completed regarding genre prediction given lyrics;
section 3 describes construction of our custom
dataset; section 4 describes methods and models
trained; section 5 discusses experimental results;
and section 6 provides concluding remarks and dis-
cusses limitations.



2 Related Works

Previous works using song lyrics have largely fo-
cused on genre classification.

(Kumar et al., 2018) uses deep learning on
Word2Vec song lyric embeddings to categorize
songs into one of the 4 genres Christian, Metal,
Country, and Rap. They report an accuracy of 65%
without TFIDF and 74% with TFIDF when using a
3-layer deep neural network.

(Tsaptsinos, 2017) attempts to classify songs
into either 20 or 117 genres by applying recur-
rent neural networks to GloVe word embeddings of
song lyrics. In a 20-genre dataset, their Long Short
Term Memory (LSTM) model achieves an accu-
racy of 49.77%. With a larger 117-genre dataset, a
hierarchical attention network (HAN) outperforms
the LSTM, with an accuracy of 46.42%.

(Akalp et al., 2021) compares performance of
a BI-LSTM model to dense layers applied on top
of BERT and DistilBERT in the classification task
of labeling songs from 13 genres. They discover
that BERT outperforms other models, achieving an
accuracy of 77.63% on one-label classification and
71.29% on multi-label classification.

3 Dataset

We construct the dataset in three main steps: (1)
gathering song lyrics, (2) finding the corresponding
songs on Spotify, (3) getting the metadata for each
song, and (4) preprocessing the dataset. Each step
presents a set of challenges.

3.1 Gathering song lyrics
We looked into many options and sources for
gathering lyrics. Websites that provide lyrics
for songs consider the lyrics a product of their
work, and protect them under IP laws. Addition-
ally, our datset requires a large volume of songs,
which poses challenges because many websites
and lyric sites have protections on their websites
and API’s that limit the rate at which we could
pull these lyrics. Ultimately, we decide to use
a dataset from Kaggle constructed by Anderson
Neisse (Neisse, 2022). The lyrics in the dataset
are scraped from the Brazilian website Vagalume
(https://www.vagalume.com.br/). The songs are
chosen to be the most popular songs of the most
popular website, according to the website. In addi-
tion to music in English, the website and the dataset
have a significant presence of Latin American and
Caribbean music in other languages. For the sake

of working in a single language with songs we are
largely familiar with, we filter the data to consist of
only songs in English, with the help of Vagalume’s
genre tags.

3.2 Finding corresponding Spotify songs
Next, in order to get metadata for each song from
Spotify, we get each song’s Spotify ID. For each
song, we search for the song by name and artist via
the Spotify API. This step takes a very long time to
run — there are over 150,000 songs to search, and
Spotify API empirically seems to allow only about
2 queries per second. Moreover, despite following
the backoff-retry strategy suggested by Spotify’s
API, an API access key gets banned for about 24
hours after about 10,000 requests. We use multiple
access keys to somewhat increase this limit. Some
songs are not found on Spotify, and sometimes
the same ID was found for multiple songs in the
Kaggle dataset; we decide that there are too many
such cases to review individually, so we simply do
not use those songs.

3.3 Gathering metadata
Using Spotify’s API, we get the genres for each
artist and musical features corresponding to each
song, namely:

• mode: whether the song is in major (mode =
1) or minor (mode = 0) key

• danceability: how suitable a track is for danc-
ing

• energy: perceptual measure of intensity and
activity

• valence: musical positiveness conveyed by a
track

• loudness: overall loudness of the track in deci-
bels

• tempo: pace of a track, given in beats per
minute.

These musical attributes are often concentrated
around particular values (see Figure 2) and are
somewhat correlated with each other (e.g. loud-
ness and energy are positively correlated).

3.4 Preprocessing
We use each song’s musical features to find and
filter out some tracks that are not really songs in



the dataset (e.g. a blurb by an artist about their
album likely has a very high "speechiness" value).
We further preprocess the data by dropping remix
and karaoke versions of the same song, dropping
duplicate lyrics, filtering out extreme values, etc.
After all these edits, the remaining final dataset
contains 86,242 songs.

4 Methodology

Our approach has two parts: (1) finding effective
encodings for the lyrics, and (2) creating a
multi-output classifier using these embeddings that
classifies them into categories or fits them to the
target variables. Our architecture is summarized in
Figure 1.

4.1 Generating lyric embeddings
We explore both pretrained and from-scratch em-
bedding generation mechanisms to generate robust
representations of song lyrics. We experiment with
three different types of embeddings:

1. Pre-trained DistilBERT, which uses a trans-
former mechanism to embed words. We
use this embedding to learn if long-term de-
pendencies between lyrics and the attention
mechanism are helpful in encoding the lyrics.
We also tried fine-tuning DistilBERT on this
dataset, but found that the model did not learn
well, possibly due to the large number of pa-
rameters.

2. GloVe model, which embeds meaning by tak-
ing account of word-word co-occurrence prob-
abilities. We use GloVe pretrained vectors of
dimension 300 as one of our embedding types.

3. RNN embeddings. We train these from
scratch using an embedding layer, a 2-layer
LSTM, and dropout layer. We attempt two
methods of from-scratch tuning: training an
RNN per head (i.e. optimizing the encoder
only for a single objective– whether that is
danceability, energy, valence, or any other sin-
gle category). We also attempt to jointly op-
timize the RNN for all of these categories at
the same time. We do this by feeding the
results of the RNN into all of the prediction
heads (further explained in 4.2) and summing
all of their losses, and then backpropagating
through all of the weights. We found that

Figure 2: Distribution of values across different metrics
in the dataset.



Figure 3: Model Architectures for song classification
head

the joint optimization didn’t perform well, in-
dicating that the feature extraction must be
different per output. Therefore, we optimize a
different RNN per output.

4.2 Computing downstream tasks
We train different models to find the best approach
for computing downstream tasks on the embed-
dings. Since many our attributes have different
formats, we use a separate approach for each for-
mat. In all cases, we split the dataset into an 80-20
split for training and testing, respectively, and we
train for 20 epochs.

4.2.1 Multi-label classification
First, we attempt to predict genre through multi-
label classification. The dataset contains 1047 gen-
res. Classifying into all these genres is an unreal-
istic classification task due to the sheer number of
genres, the similarity and overlap between many
of the genres, and the rarity of some genres. To
address this, we narrow down our dataset to 20 gen-
res. We pick 20 of the most common genres with
low overlap: [rock, dance pop, pop, mellow gold,
metal, permanent wave, rap, singer-songwriter, hip
hop, punk, indie rock, urban contemporary, neo
mellow, r&b, country, soul, adult standards, folk,
new romantic, and trap]. Then, we filter out all
genres not in this set. For each song, we convert
the genres from a string representation to a multi-
hot encoding, a 20-dimensional vector where each
entry is 1 if the corresponding genre is one of the
song’s genre labels, and 0 if not.
Then, we train a model to predict a probability for

Figure 4: Neural network used for binary classification
and regression tasks

each of the 20 genres. We use the neural network
architecture shown in Figure 3.

For training, we use pytorch’s BCEWithLogit-
sLoss() function, which combines a sigmoid layer
with binary cross entropy loss. For our optimizer,
we use the Adam optimizer. To measure perfor-
mance of the model, for each song we take the
argmax of the model’s output and treat that genre
as the model’s prediction for the song’s genre. We
consider a prediction correct if it is in fact one of the
song’s genre labels, and incorrect otherwise. Using
this method, we compute and record the accuracy
for the test dataset. We also evaluate performance
using the AUCROC. To do this, we assign different
thresholds to designate a positive and calculate the
true positive rate and false positive rate. We plot
this and calculate the area under the curve (AUC)
as an additional measure of accuracy.

4.2.2 Binary classification
We use binary classification for predicting mode,
since mode is always either 0 or 1. We pass the lyric
embeddings from 4.1 through the neural network
architecture shown in Figure 4. The neural network
outputs a value between 0 and 1, which we round
to get our prediction. We train the model using
binary cross entropy loss and the Adam optimizer.
Finally, we measure accuracy by calculating the
classification accuracy of our rounded outputs on
the test dataset.

4.2.3 Regression
Finally, we use regression to predict the remaining
attributes: danceability, energy, valence, tempo,



Figure 5: AUC-ROC curves for genre. BERT exhibits
better AUC than the other metrics

BERT GloVe RNN
AUC-ROC 0.89 0.85 0.83
Accuracy 54.6% 48.4% 45.8%

Table 1: Genre results.

and loudness, which are all numerical attributes.
Danceability, energy, and valence are defined to be
numbers between 0 and 1, and we normalize tempo
and loudness so that they also lie in this range.
To predict each value, we pass the lyric embeddings
through the same neural network architecture as
used in binary classification, shown in Figure 4.
However, we no longer round the outputs, and we
use mean squared error for our loss function instead
of binary cross entropy.

5 Results

In this section, we discuss our results in (1) genre
prediction, (2) mode prediction, (3) regression pre-
diction of danceability, energy, valence, tempo, and
loudness.

5.1 Genre
Our results of classifying songs into 20 genres us-
ing multi-label classification are shown in Table
1. We see that BERT performs the best in both
metrics, with the highest AUC-ROC of 0.89 and an
accuracy of 54.6%. GloVe is next best, and RNNs
perform the worst. As expected, the pre-trained
results perform better than our RNN from scratch,
as they are trained on larger sets of data. BERT, a
transformer based approach, performs the best, and
shows better performance than GloVe’s word-word
co-occurrence probabilities. The three AUC-ROC
curves are shown in Figure 5.

We can see that BERT primarily achieves more
true positives at lower confidence thresholds than
GloVe or RNNs, since it is able to assign label
unlikely low genres a lower confidence.

We find that our accuracies are comparable to
those achieved by (Tsaptsinos, 2017), and that
BERT outperforms these models. Since we chose
different genres than the papers cited, it is unclear
to what degree the genre selection played a part in
this. Our results also support the trend of more gen-
res leading to poorer classification results, which is
logical due to genres overlapping as the number of
genres increases.



BERT GloVe RNN
Mode 69.96% 68.5% 67.8%

Table 2: Accuracy for mode predictions.

BERT GloVe RNN
Danceability 0.0189 0.0209 0.0268

Energy 0.0381 0.0429 0.0563
Valence 0.0477 0.0503 0.0681

Loudness 0.0048 0.0055 0.0074
Tempo 0.0193 0.0197 0.0210

Table 3: Regression MSE values.

5.2 Mode
Our results of predicting mode through binary clas-
sification are shown in Table 2. We observe that all
three models achieved an accuracy of about 68%,
which did not significantly improve over the 20
epochs of training. In all three cases, the model
learns to predict 1 for almost all of the lyric exam-
ples, leading to a 68% accuracy because 68% of
the values in the test dataset have a mode of 1.

These results suggest that the parameter mode
is not well associated with song lyrics. All three
models were unable to learn any useful association.

5.3 Regression Categories
For the remaining categories of danceability, en-
ergy, valence, tempo, and loudness, we predicted
values using regression. Table 3 displays the MSE
loss values for each model and category. Once
again, we see that overall, BERT performs the best,
followed by GloVe, and finally RNNs. Table 4
shows the correlation values for each of these mod-
els.

We observe that MSE is not a good indicator
of model performance, as we see low correlations
for tempo despite the small MSE value. Dance-
ability and energy show the strongest correlation,
followed by valence and loudness, and finally mini-

BERT GloVe RNN
Danceability 0.4524 0.4238 0.3571

Energy 0.5067 0.4357 0.3587
Valence 0.3341 0.3641 0.2780

Loudness 0.4378 0.3506 0.2916
Tempo 0.0970 0.1163 0.0303

Table 4: Regression correlations of actual and prediced
values.

mal correlation in tempo. These results suggest that
our models are best able to learn associations with
danceability and energy, do moderately well with
valence and loudness, and finally learn minimal
results for tempo.

We explore scatterplots for the first 1500 points
of the test set for two of these categories. Figure 6
shows scatter plots of danceability and tempo for
the three models. The left column displays dance-
ability plots and the right column displays tempo
plots, in the order BERT, GloVe, RNN from top to
bottom. We observe that all the danceability plots
show a moderately positive correlation between
actuals and predicted, reflecting moderate success
in learning an association between song lyrics and
danceability. Meanwhile, the tempo scatter plots
all appear to have minimal to no correlation. While
the MSEs are low, this appears to be primarily due
to predictions falling in the range from 0.4 to 0.6.

6 Impact Statement

We hope that in the future, lyrics will play a larger
role in the metadata stored about songs. Lyrics
are important to songs, and have an important role
to play in tasks related to categorization and rec-
ommendation engines, and can also be helpful to
increasing the accuracy of existing automatically-
generated metadata. Our work demonstrates the po-
tential of NLP techniques in this space by showing
that lyrics alone can be used as a strong predictor
of genre and other musical attributes.

However, before similar techniques are imple-
mented by a large music service, there are many
sensitive issues that merit significant consideration.
For instance, we noticed that even if musical at-
tributes of songs are similar, artists and songwriters
of different walks of life and cultural backgrounds
might have different diction. Consequently, even if
a human would say two songs are of very similar
genres, a lyric-based system may predict starkly
different genres. As another example, lyrics often
contain slurs or pejoratives that open the door to
model bias. While our focus was mostly on explor-
ing techniques to start using lyrics as metadata, we
recognize that our model does not address many of
these challenges.
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