6.4212 Final Project: TetrisBot

Pranav Arunandhi
MIT

apranav@mit.edu

Abstract

In this project, we explore the granularity of pick-and-
place algorithms when combined with gameplay algorithms
and complex simulation machinery. To that end, we develop
a robot that can play the puzzle video game Tetris from end
to end. We randomly generate pieces at a specific location,
develop a perception system to detect the pieces, develop an
algorithm for generating legal moves given a board, rotate
and place the pieces at the desired location, and clear rows
once they are completed. We show that using Drake and an
iiwa arm, we can successfully leverage simulation software
to mimic the unrealistic aspects of Tetris, such as telepor-
tation and line clears, in combination with more traditional
pick-and-place workflows to play a game of Tetris success-
Sfully. To our knowledge, this is the first work that explores
simulating Tetris using a robotic arm.

1. Introduction

Pick-and-place tasks have long been an important part
of manipulation, as they often require fine-grained percep-
tion and control. Examples such as the Toyota Research
Institute’s dishwasher loader show that in the real world,
robots are able to achieve such granularity and can complete
these tasks. In this project, we combine these advances with
added complexity resulting from playing a game requiring
extremely high-fidelity manipulation. We choose Tetris, a
puzzle game that is played by moving seven different pieces
that fall onto a playing field. Players can choose the rota-
tions and locations for the pieces. Completed lines on the
board clear automatically, and players lose when the un-
cleared lines reach the top of the board.

Tetris is an interesting problem to solve through manipu-
lation because it is inherently unrealistic: teleporting blocks
and clearing rows do not exist in the real world, so this
project is an investigation into not only the actual mechanics
of solving the manipulation aspects of this problem, but also
how much of this unrealistic behavior we can mimic using
simulation. Through creating a robotic version of Tetris,
we can pave the way for more interactive simulators and

Ashley Ke
MIT MIT

ashleyke@mit.edu

Sadhana Lolla

sadhana@mit.edu

Hal SRy ¥

1. Construct and teleport
anew piece

5. Update board state and
clear rows if necessary

2. Detect piece using CNN

4. Place piece at desired
location

3. Get rotation and position
from gameplay algorithm

Figure 1. Workflow of TetrisBot. We first teleport a random piece
to a fixed location, and then use object detection to determine
which piece was generated. Then, our gameplay algorithm assigns
a rotation and drop position, which we translate into a final pose
on the game board. The iiwa places the piece, and we update our
board state.

robotic games in the real world, such as Connect 4, Jenga,
and chess, which also require precise pick-and-place com-
bined with gameplay algorithms and complicated rules.

In summary, our novel contributions are as follows:

* An end-to-end system that can play Tetris automati-
cally, as shown in Figure 1.

* A highly precise pick-and-place workflow that



Figure 2. TetrisBot preparing to drop a Tetris piece onto the game
board.

achieves realistic grasping and dropping of pieces, as
shown in Figure 2.

* A method of simulating unrealistic aspects of puz-
zle video games by introducing breaks in simulation
loops.

2. Related Work

At a high level, pick-and-place is a highly studied field
with a variety of applications. We consider the aforemen-
tioned dishwasher loader developed by TRI, which tackles a
very similar problem as is presented by Tetris - both involve
object identification, optimal placement determination of an
object while taking into account future objects that may in-
teract with it, grasp determination to interact with the ob-
jects, and trajectory optimization. Despite this, the prob-
lems are still distinct - the TRI robots have much more ad-
vanced perception using principles such as segmentation to
properly identify the dishes, while a robot playing Tetris
would have to keep track of a world state that can evolve in
very different ways based on each successive choice.

Another similar robotic system we can consider is the
shopping cart robot, also from TRI, tasked with traversing a
supermarket-style area and selecting the relevant items off
of the shelves. Having the robot traverse and search a new
environment introduces the need for SLAM to the problem,
but the core pick-and-place pipeline is still present - identi-
fying objects, grasps, and trajectories to successfully com-
plete the task. Placing objects into a small shopping cart
problem is a very similar problem as piece placement in
Tetris, where each placement needs to be made while at-
tempting to optimize over potential future states.

Within the realm of games specifically, Tetris can be
contextualized as both a single-player game with the ob-
jective of surviving for as long as possible, or alternatively

as a two-player game with an adversary selecting pieces to
limit the player’s survival. This ties in with similar long-
term strategy games with uncertainty, such as Jenga. Jenga
has been used as a target of research for various manipu-
lation tasks, such as visual object identification and meta-
learning [3, 4]. This paper, while taking a more cursory
approach on the whole, will show that Tetris is a suitable
game of study as well for similarly complicated problems
in games.

3. Methods

In this section, we describe our approach to building
TetrisBot. First, we give a brief overview of the entire simu-
lation. The simulation consists of three fixed objects: (1) an
iiwa arm with a wsg gripper placed at the origin, (2) a game
board, and (3) a camera placed at (0, 0.5, -0.25) facing in
the positive z direction.

In one iteration of the game loop, a Tetris piece is ran-
domly generated and placed at (0, 0.5, 0). We use the cam-
era to take a picture from below, and then feed the image
through a CNN to determine the piece type. Then, we use
the gameplay algorithm to determine a rotation and drop lo-
cation. Finally, we construct a trajectory for the iiwa given
these drop parameters, and the iiwa then executes the drop
trajectory. The gameplay algorithm updates the game state,
which is used to clear rows that are complete and update the
board in the simulation.

3.1. Setup

We first describe the creation of of simulation compo-
nents. We use the default iiwa, wsg, and camera SDFs as
provided in the drake library. We create the game board
and Tetris pieces using custom SDFs, as described in the
following subsections. The unit block size in our simula-
tion is 0.03.

3.1.1 Board creation

We create the board in an SDF file to be a 0.3 x 0.6 flat
horizontal plane, which is the standard Tetris board size of
10 blocks wide by 20 blocks tall. The corners of the board
are located at (-0.4, -0.3), (-0.4, 0.3), (0.7, -0.3), (0.7, 0.3)
in the xy-plane. We chose a horizontal representation for
the board after experimenting with both vertical and slanted
boards. We found that for the vertical and slanted boards,
the effect of gravity in the physics simulator caused many
imprecise drops, resulting in blocks colliding.

3.1.2 Piece creation

We create the pieces in 14 different SDF files.
First, we create 7 different SDFs for each Tetris piece: I,
J,L, O, S, T, and Z. Each piece has its own corresponding



shape as defined by the Tetris game and a unique color. We
set the collision geometry of each piece to be 0.01 smaller in
each of the x and y dimensions. This is because the pieces
collide frequently when placed adjacent to each other, so re-
ducing the collision geometry allows the pieces to visually
lock into place next to each other with fewer collisions.

Then, we create 7 more SDFs of unit cubes to represent
pieces after they have been dropped. Each cube corresponds
to exactly one of the Tetris pieces and takes on that color.
In the game loop, once a piece is dropped, it is turned into
4 distinct cubes that now act individually in the next simu-
lation update. To prevent issues with these cubes bumping
each other out of place, we reduce the collision geometry
by 0.01 in the y dimension.

3.1.3 Board representation

We internally represent the board with a 20 x 10 ar-
ray board_state with one of the 8 following values:
None, I, J, L, O, S, T. We set board_state[r] [c] to
None if no cube is present at row r, column c. We set
board_state[r] [c] toletter ! if a cube from piece type
l is present at row r, column c. The rows are enumerated
from O to 20 in the direction of the positive y axis, and the
columns are enumerated from O to 10 in the direction of the
positive x axis.

Given a board representation, we generate the actual
board in simulation by placing unit cubes at each row and
column where board_state[row] [col] is a letter .
We select the corresponding cube to piece type [ and gener-
ate it at that location.

3.2. Simulation Loop

We now describe the simulation loop, which runs the
game. The simulation loops through the following sequence
of steps for each piece.

1. Piece teleportation: generate a random Tetris piece and
teleport it to the starting location (0, 0.5, 0).

2. Object detection: use the camera to take a picture of
the piece. Feed the image into a CNN to categorize it
as one of the 7 Tetris pieces.

3. Gameplay algorithm: given the piece type and current
board state, compute a rotation and drop column for
the piece.

4. Pick and place: given the drop parameters, execute
a pick and place trajectory that will grasp the piece,
move it to the desired drop grasp, and drop the piece
in place.

5. Board update: with the new piece dropped, compute
the new internal board representation. Clear any full

Figure 3. Two examples of inputs to the CNN. We note that since
the camera is placed below the robot, the pieces appear reversed.

rows (according to Tetris rules), and regenerate the
board in simulation from the internal representation.

The approach to each of the these steps is described in
further detail in the following subsections.

3.2.1 Piece Teleportation

We “teleport” a random piece to a set location to approxi-
mate a piece appearing for the user to place. To accomplish
this, we choose a random piece, load the SDF for the piece,
and set the free body pose to the default location (0, 0.5, 0).

3.2.2 Object Detection

The camera is placed at (0, 0.5, -0.25), directly below where
pieces are placed. Immediately after the piece is teleported,
the camera captures an image and runs a forward pass of
our object detection neural network. Figure 3 shows exam-
ple images taken from the camera that are used to identify
pieces.

For the object detector, we use transfer learning with a
frozen pre-trained MobileNet [1] and replace the last two
layers of the network with a fully connected head to pre-
dict which one of the seven Tetris pieces has been gener-
ated. We create a small dataset using the camera images
and perform data augmentation using random color jitters
and crops. Since we will receive one of seven exact images
from the camera every time, there is no change in rotation,
position, or color, of the randomly generated pieces— so we
do not need a large corpus of data, since we are guaranteed
that the network will see an image that it has previously
seen before. Once the image has been classified, we pass
the piece information into the gameplay algorithm.

3.2.3 Gameplay Algorithm

The gameplay algorithm takes in the current piece as de-
termined by our object detection algorithm, and computes
a rotation and drop column according to the stored game
board state. The goal of the algorithm is to allow the robot
to survive in the game for as long as possible.



Figure 4. Two examples of the robot grasping the Tetris block,
with the key frames of the pick and place trajectories visualized.

The algorithm as implemented is relatively naive and de-
terministic, and is based on [2]. It considers all potential
rotations of the passed-in piece type, and finds the lowest
possible row to place the piece in for every column on the
board. For each of these potential drop locations, the algo-
rithms selects a drop by minimizing three metrics, in order:
the number of “gaps” generated by the drop, where a gap
is defined as an empty board location with a filled in board
location above it in the same column; the maximal height
of the tower of pieces; and the row that the piece is being
dropped in. If there are still multiple potential drops, one is
selected arbitrarily.

All of these metrics are used in optimal human Tetris
play as well, amongst others that are more difficult to quan-
tify, such as “potential for a multi-line clear”, since these
are worth more points in the game; however, the metrics
used are empirically more effective for surviving as long as
possible.

In order to communicate the drop decided on by the algo-
rithm to the robot, the algorithm provides a tuple consisting
of the following data for the desired drop: the number of
clockwise rotations; the row and column locations of the
true center of the piece; and the updated board state.

3.2.4 Pick and Place

Once the desired drop rotation and locations are determined,
the iiwa constructs a trajectory to perform a pick and place.

First, we construct the iiwa trajectory, which con-
sists of four poses: X_W_grasp, X_-W_intermediate,
X W_drop, and X W_init. The first pose X _W_grasp is
the pose for picking up the piece, which is fixed for all
pieces since each piece is generated in the same starting ori-
entation. The second grasp X_-W_intermediate is also
constant, and it rotates the iiwa arm to move to the center of
the board. X_W_drop is calculated depending on the drop
parameters. The RotationMatrix is set corresponding to the
desired rotation of the piece. For position, x and y are com-
puted from the row and column parameters given for the
center of the piece, and z is set to a constant drop height of

Figure 5. Tetris game board before and after clearing a full row.

0.2. Finally, X_W_init is constant and resets the iiwa arm
to the initial state of the trajectory at the end of each pick
and place. These poses are constructed into a trajectory us-
ing PiecewisePolynomial.MakeLinear.

Note that while X W_intermediate and X_W_init
may seem unnecessary, they are important for resetting the
iiwa arm to the original state after each pick and place.
Without these intermediate poses, the iiwa arm takes a sub-
optimal route between the grasp and drop poses, preventing
it from fully reaching many of the grasps. The four key
poses described in this section are visible in two example
trajectories in Figure 4.

We also construct a corresponding gripper trajectory. We
set the gripper to close at X_W_grasp to pick up the piece,
we set it to open at X_W_drop to drop the piece. We con-
struct the final gripper trajectory using PiecewisePolyno-
mial.FirstOrderHold.

Finally, the iiwa and gripper trajectories are passed to the
output ports of the iiwa arm and wsg gripper, simulating the
pick and place.

3.2.5 Board Update

Once the piece has been placed, we update the board to
contain the new piece. The gameplay algorithm executes
the logic of computing the new board_state by plac-
ing the piece and clearing fully completed rows. As soon
as the new piece is placed, we reassign the new value of
board-state, and the board is then regenerated with
cubes in simulation. This also corrects any misplaced
blocks, since when the board is regenerated, dropped Tetris
pieces are removed and corresponding colored cubes are
generated in their intended positions. Figure 5 shows an ex-
ample game update, where the bottom row is cleared after
the drop of the black Z-piece.

4. Results and Discussion

The result was a simulation that successfully simulates
the described components of Tetris. We successfully tele-
port a random piece and detect it, then the iiwa successfully
picks and places pieces according to the rules of Tetris, and
finally the game board updates and clears rows as expected.



4.1. Evaluation
We evaluate performance on the following metrics:
1. Correct identification of teleported Tetris block.

2. Legal placement of each Tetris block as according to
gameplay.

3. Minimized difference between intended block position
and actual block position.

4. Correct update of board_state following each
piece drop.

Metric 1 is essential because it evaluates whether the imple-
mentation of the teleportation and object detection are both
correct. We measure these using the accuracy metrics of
the CNN, and by visual inspection. Metric 2 evaluates the
gameplay algorithm, ensuring that we do not request an il-
legal move. We can evaluate this by visual inspection, or by
ensuring that the simulation can solve the system (i.e. it will
fail if we try to place two blocks in the same place). Metric
3 evaluates the grasping mechanism: once we have a correct
position identified, we want to ensure that we achieve that
position. We evaluate this by visual inspection, checking
the difference between the center of mass of the dropped
block and the intended center of mass.

To test these metrics, we run the game simulation 10
times, for 10 blocks each and observe progression of the
simulation. We found that the CNN achieves 100% ac-
curacy, as expected, since we only classify seven blocks.
We also find that the Tetris algorithm does not generate
blocks that violate game rules; however, it is difficult to
measure the optimality of the gameplay algorithm. In ad-
dition, our grasping poses achieve very close actual posi-
tion when compared with intended position; we find that
the grasps fail mostly on edges; the first row had the most
blocks fall of the board. We originally found that placing
pieces directly next to each other resulted in collisions, and
mitigated this by making collision geometry smaller than
the visual geometry. We find that for Metric 4, the board is
updated correctly: cleared rows disappear and the blocks in
the rows above move down, and pieces remain intact and in
their correct positions if there are no lines that clear.

4.2. Limitations

We faced several limitations when implementing the
simulation.

There were several physical limitations of the simula-
tion. The block size was restricted by the width of the grip-
per, limiting us to a relatively small board. We also ran
into difficulties with our original idea of implementation on
a vertical or slanted board. We found the effects of grav-
ity too strong, leading to very imprecise drops that would
sometimes crash the simulation.

Even with the horizontal board, we still found dropping
to be a limitation. Precise drops required the robot to move
extremely slowly, which reduced the quality of the game as
a visual experience. When the pick and place trajectory was
executed in too short of a time period, the pieces sometimes
fell on their sides or collided into with blocks, preventing
them from dropping in their precise locations. Sometimes
imperfect collisions would also cause pieces to wobble in
place after landing on the board, creating the illusion of
a rotating piece until the simulation resets. These imper-
fect collisions also occasionally led the entire simulation to
crash with convergence errors from MultibodyPlant’s dis-
crete update solver.

Another limitation comes with the simulation reset. Af-
ter each piece drop update, new cubes are generated for the
new game state. The old cubes are only deleted after the
new ones are generated, creating a doubling effect in the
time where the simulation contains both new and old blocks.
When we tried deleting the old cubes before, it created a
gap in the simulation, showing an empty board in the time
it took to load and teleport the new cubes.

Finally, the algorithm we use for gameplay is naive and
non-optimal, which creates suboptimal game states after a
large pieces have been placed.

5. Conclusions

In this project, we demonstrate that we can combine
pick-and-place, simulation loops, neural networks, and
gameplay algorithms to create the first end-to-end Tetris-
playing robot arm. We show that we can teleport pieces and
clear rows using a simulation loop, and we can place pieces
extremely precisely with error correction as necessary.

Tetris as a game presents an interesting and diverse series
of problems that are relevant to the field of robotic manip-
ulation, and we demonstrated its utility as a tool to study
these problems. We could further extend TetrisBot by de-
veloping an optimal algorithm for gameplay: algorithms for
Tetris typically involve genetic algorithms and reinforce-
ment learning, which we do not use here. We could also
further tune simulation parameters to achieve a more realis-
tic board, such as a vertical board with a lower gravity. We
could also increase the effect of gravity as time goes on in
the case of a vertical board, which would result in blocks
falling faster as the game progresses, which is representa-
tive of behavior in Tetris. In addition, we can implement
multi-player or adversarial Tetris with another iiwa arm.

Our code is available at https://tinyurl.com/
roboTetris.

6. Team Contributions

We split up project work to allow different team mem-
bers to focus on different aspects of the game.


https://tinyurl.com/roboTetris
https://tinyurl.com/roboTetris

Sadhana created SDFs for the various boards tried, along
with Tetris pieces and cubes, and designed the visual and
collision geometry of the blocks necessary for simulation.
She also implemented the camera system and the neural net-
work for object detection. She also contributed to telepor-
tation of pieces at the start of each move.

Pranav implemented the algorithm for the game. He
implemented all logic for the internal representation
board_state.

Ashley implemented the pick and place trajectories for
each piece. She computed the poses required for grasping
and placing each piece, and constructed the corresponding
trajectories. She also constructed the game simulation loop,
which runs the game and generates the game board from the
internal representation.

All three members contributed to the writing of this re-
port.

References

[1] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. 2017.
3

[2] Alvin Lin. tetris-bot. https://github . com/
omgimanerd/tetris-bot/tree/simple, 2016. 4

[3] Luca Marchionna, Giulio Pugliese, Mauro Martini, Simone
Angarano, Francesco Salvetti, and Marcello Chiaberge. Deep
instance segmentation and visual servoing to play jenga with
a cost-effective robotic system. 2022. 2

[4] Corban G. Rivera and David A Handelman. Visual goal-
directed meta-learning with contextual planning networks.
2021. 2


https://github.com/omgimanerd/tetris-bot/tree/simple
https://github.com/omgimanerd/tetris-bot/tree/simple

	. Introduction
	. Related Work
	. Methods
	. Setup
	Board creation
	Piece creation
	Board representation

	. Simulation Loop
	Piece Teleportation
	Object Detection
	Gameplay Algorithm
	Pick and Place
	Board Update


	. Results and Discussion
	. Evaluation
	. Limitations

	. Conclusions
	. Team Contributions

