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Abstract

This work presents StyleAl, an Al-powered fashion
stylist, which takes in a garment as input and outputs other
clothing items that would pair well with it. This work
proposes a novel model contrastive learning architecture
for this application; contrastive learning is a form of self-
supervised learning that enables models to easily learn as-
sociations between their inputs. Key to the functionality
of this model is a novel representation for clothing and
sets of compatible clothing, or outfits, in the form of a
neural-network generated embedding. This work proposes
a method of robustly encoding information about individual
garments, and the way they fit together as a whole outfit.
Ultimately, when trained on a dataset of images, StyleAl
achieves a top-5 accuracy of 57%. Qualitative analysis of
StyleAl'’s output predictions suggests that its performance
as an Al-powered stylist is even higher.

1. Introduction

Computer vision models have advanced significantly in
recent years. Artificial intelligence can now generate real-
istic images and videos of people and scenes who do not
exist. It can identify objects in an image in nearly real-time,
and generate brand-new artwork given a few suggestions as
input [4] [3].

Amidst these advances, we pose the question: is it pos-
sible for computer vision systems to gain an eye for fash-
ion? In addition to aiding users by providing them with
Al-generated fashion advice, this problem poses a much
deeper question, which is if we can teach AI models to learn
completely subjective behaviors. Instilling a model with a
“fashion sense” is a difficult problem. The model must iden-
tify texture, color, and pattern of garments, and learn which
combinations of these factors pair well. It must also con-
sider garment shape and length. A dress is different from
a shirt. Different “cuts” of jeans (i.e. straight cut, skinny,
boot cut) change the styling capabilities of the garment. The
subjective and qualitative nature of this task makes it harder
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still. There are no quantitative metrics that describe whether
a specific top pairs “better” with one pair of pants over an-
other.

Compared to other computer vision tasks, this problem is
unique in that there is no “correct answer.” Even if ten fash-
ion designers were placed in front of the same corpus of
clothing and given an item around which to design an out-
fit, they would probably also design different outfits. There-
fore, our goal here is not to create a model that has memo-
rized the fashion sense on the dataset on which it is trained,
but rather to imbue the model with a sense of what items
pair well together, and a sense of color, texture, and com-
patibility when creating outfits.

It is difficult, unwieldy, and likely incorrect to only con-
sider each facet of a garment individually when designing
outfits. The key to developing a fashion sense, then, is iden-
tifying a good garment representation that captures all of
the individual characteristics of the garment. With this rep-
resentation, it is then important to determine how to com-
bine items in a way that maximizes compatibility. Because
there are no hard rules for styling clothes (it can be diffi-
cult to articulate why two items of clothing match or not),
a non-human fashion stylist must learn by example, not by
heuristic.

To this end, we propose StyleAl, a novel artificial-
intelligence model that can generate outfits (an outfit is de-
fined as a top, bottom, and pair of shoes) given a specific
garment as a starting point.

StyleAl relies on contrastive learning to make its pre-
dictions. Contrastive learning is a self-supervised learning
technique which relies on a dataset with a few image and la-
bel pairs, and a large number of positive and negative exam-
ples that relate to that class. It aims to mimic how a human
learns — by learning the associations between items.

Unlike prior work, StyleAl relies on rich embeddings of
clothing items generated in two different spaces: the item
space and the outfit space. These embeddings are generated
by combining the image of the garment with associated text
(e.g. "Levi’s light wash jeans” or ”Nike Air Force 1”). Prior
work has utilized just one embedding to capture information



about the garment and its compatibility with other clothing
items.

Our embeddings separate this information into two dif-
ferent entities, with the intuition that a single embedding
trying to optimize for two different objectives (item descrip-
tion and compatibility) is less effective than two separate
embeddings. For instance, a pair of blue jeans should be
clustered tightly with other blue jeans and pants in the item
embedding space, to capture its clothing category, color, fit,
etc. On the other hand, in the outfit embedding space blue
jeans should be grouped with other categories of garments
to be able to create outfits that contain one item in each cat-
egory (top, bottom, shoe). It is difficult for both types of
clusters to exist in the same embedding space.

Our quantitative and qualitative results show that StyleAl
is successful in its role as a stylist. Quantitatively, the best
version of StyleAl achieves 57% top-5 accuracy on outfit
generation. Qualitatively, these results appear better. Even
if StyleAlI does not predict the exact garment that the input
image was matched with, it predicts something very similar.

Ultimately this work makes the following contributions:

e Designs a new contrastive-learning architecture,
known as StyleAl, for outfit prediction that utilizes
multiple embeddings to make informed decisions
about compatibility in outfits

* Identifies a robust method of representing garments
that captures both descriptive information and compat-
ibility

* Demonstrates successful outfit generation by StyleAl,
with 57% top-5 accuracy and higher qualitative evalu-
ation

2. Background and Related Work

Al-powered fashion stylists have been proposed in the
past. Prior work has explored using a variety of different
learning techniques. Some work uses genetic search, while
others learn intelligent distance metrics to represent com-
patibility between clothes [10] [11]. Other work explores
representing an outfit as a sequence of clothes which could
be predicted using LSTMs [5] [7], or using multi-task self-
supervised learning to identify similarities in color or tex-
ture that could indicate a good match.

Bettaney et al generates embeddings for each clothing
item, based on the image of the garment, textual descriptors,
and a high-level item style category (e.g. “casual plain”)
[1]. Item embeddings for a proposed outfit are passed into a
scorer, which utilizes a dot-product based metric to evaluate
the compatibility of the items when worn together.

2.1. Encoders

There are many different ways to generate embeddings
of data. An embedding is a compacted representation of
the most salient features of input data. Based on the way
that embeddings are generated, distances between embed-
dings in the overall embedding space can represent changes
in different properties of the input data.

Many different models, known as encoders, have been
pre-trained on large, general corpuses to embed different
modalities of data. For instance, GloVe is an encoder for
textual data [8]. More recently, encoders have combined
multiple modalities of data. CLIP (Contrastive Language-
Image Pre-Training) is trained to learn strong associations
between pairs of images and text, and generate embeddings
that capture this information [9]. These embeddings are of-
ten more robust and contain more information.

2.2. Self-Supervised Contrastive Learning

Similarly, there are many different ways to train a model:
supervised, self-supervised, and unsupervised. Contrastive
learning is a type of self-supervised learning.

While prior work has exploited self-supervised learning
to learn textures and colors of clothing items, it has not
utilized contrastive learning on entire garments as StyleAl
does in the context of fashion and outfit styling.

The basic principle of contrastive learning is shown in
Figure 1. Contrastive learning learns positive and negative
associations like the ones shown. This is preferable to su-
pervised learning, because we do not have to explictly pass
in every association as a (data, label) pair when training the
model. It is also preferable to unsupervised learning, be-
cause we do have a grouping of items that we would like to
enforce.

3. Methods

Inspired by recent advances in contrastive learning, we
choose to learn a two-part model representation in a man-
ner similar to that of SimCLR and other contrastive learning
frameworks. SIimCLR is a state of the art contrastive learn-
ing architecture [2].

Namely, our model is comprised of two parts: an encoder
f (x) which outputs embeddings, and a projection head g(x)
which projects these embeddings into the outfit space. We
then apply a contrastive loss function to maximize similarity
between items of the same outfit and minimize similarity
between items from different outfits. We choose to focus
on outfits with three items: tops, bottoms, and shoes. The
model architecture can be seen in 2.
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Figure 1. (a) Standard example of contrastive learning; (b) StyleAI’s example of contrastive learning, where outfit groupings are taken

from the dataset

3.1. Dataset
3.1.1 The Polyvore Dataset

We use the Polyvore dataset, which contains outfits cre-
ated by users from the now-defunct website Polyvore.com.
These outfits represent a wide range of tastes and cloth-
ing items. Each item in the dataset contains an image, the
name of the item (usually descriptive of the color, fit, or
other attributes of the outfit). Previous studies have capital-
ized on the order of the outfit items (usually top, bottom,
shoes, purse, followed by accessories) to model this as a se-
quential learning problem, where items are chosen sequen-
tially based on items that came before them in the tuple of
items— however, we argue that these sequences are arbitrary
and choose to focus on representation learning of the items
themselves [7]. The Polyvore dataset contains 21000 out-
fits for training, which we filter based on the presence of
tops, bottoms, and shoes. Our training set therefore con-
tains around 11000 outfits, each consisting of three items.
Most of the images in the Polyvore dataset are standalone
images of the items themselves (i.e. not a model wearing
the item in question), so we do not have to segment out the
relevant parts of the image. We choose to focus on images
of the clothing items only in order to reduce noise and use
text embeddings to convey more information about the fit,
texture, and other details of the item.

3.2. The Contrastive Learning Framework

Our contrastive learning architecture (shown in figure 1)
takes in outfits. For each outfit, the encoder generates the
item embedding of each garment of clothing. This embed-
ding is passed through the projection head, which generates
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the feature representation in the outfit embedding space.
Our goal is that items that belong in the same outfit are close
to each other in this latent space, while items that are not
part of the same outfit are further apart in the latent space.
We then apply the contrastive loss can be applied in the out-
fit embedding space. The outfit embeddings are evaluated
for similarity through a pairwise dot product to generate a
compatibility score for the outfit.



Figure 3. ConvNet Model Architecture

3.2.1 Choice of Encoder

We experiment with two different encoders: CLIP, a self-
supervised method developed by OpenAl [9], which learns
a representation of an image by learning the association be-
tween the image and corresponding text. CLIP applies con-
trastive learning to maximize the similarity between an im-
age and its corresponding text. We compare representations
learned by CLIP with a standard Resnet18, as well as a net-
work consisting mainly of a few convolutional layers.

e CLIP: CLIP is a self-supervised learning algorithm, as
well as a zero-shot classification algorithm, where rep-
resentations of images are learned by calculating the
cosine similarity between tokenized vectors of the cor-
responding text and image embeddings. We use CLIP
to capitalize on the presence of large amounts of de-
scriptive text associated with every image. When we
use CLIP, we concatenate the embeddings of the im-
ages and text and pass these into the projection head
later on.

* Resnet: Resnet is an extremely common base model
network used in various self-supervised tasks, so we
use it here to extract only the image embeddings.

» Simple CNN: Finally, we compare the performance
on Resnet and CLIP with an extremely simple CNN,
short for Convolutional Neural Network, (architecture
shown in 3) to determine whether training from scratch
achieves better results than using pretrained networks.

3.2.2 Projection Head

We develop a projection head that learns a new embed-
ding from the original image embeddings, and apply a con-
trastive loss in this space, explained in section 3.2.3. We
choose to apply the projection head because it has been
shown that introducing nonlinearities after the encoder is
more conducive to the contrastive loss and improves rep-
resentation learning generally, since the contrastive loss
causes a loss of information [9]. Intuitively, we consider the
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Figure 4. Projection Head Architecture

encoder network as a way to learn relevant features about
clothing items, such as fit, color, and texture, and what they
represent, and the projection head learns how to combine
these embeddings in a way that maximizes compatibility.

For our projection head, we use a three-layer multi-layer
perceptron with ReLU activations, separated by dropout
layers with 50% dropout to prevent overfitting, as shown
in Figure 4.

3.2.3 Similarity Metric

Like other similarity metrics, we use the normalized dot
product or cosine similarity between two embeddings.
Therefore, we define the similarity between two items as:

a-b
[lalllfol]
The similarity between three items is the sum of the pair-

wise dot product. In other words, the similarity between top
t;, bottom b;, and shoes sy, is:

s(a,b) =

simy i = s(ti, b;) + s(ti, sx) + s(b;, sk)

We do not take the similarity between items of the same
category.

3.2.4 Contrastive Loss with Temperature Scaling

Unlike other outfit generation paradigms, we do not present
the model with negative examples explicitly. Instead, nega-
tive examples are presented in every batch during training.
For a given outfit, we define a negative example as a triple
that contains at least one (but not all) of the items of the



correct outfit. For example, for a given triple (¢;,b;, s;), a
negative example is (¢;,b;, s;) where j # i. Then, there
are 3N (N — 1) negative examples per outfit: there are N
options for each item in the triple, of which NV — 1 are in-
correct. The number of triples containing three incorrect
items is (N — 1)3. Using complementary counting, we see
that the number of triples containing at least one but not
all three correct items is the total number of triples minus
those containing zero correct items and those containing all
three (the correct outfit), which is N3 — (N — 1) — 1 =
3N2—3N = 3N (N —1). These negative samples are then
presented to the model, and we use them to aid in training
as shown in Figure 5. The larger the batch size, the more the
model benefits from exposure to negative samples. We vary
the batch size between 32 and 64 for this study; however,
in practice, batch sizes can reach up to 1000 samples per
batch. In our case, since the number of negative samples is
polynomial in the size of the input, we do not increase the
batch size to be greater than 64.

We calculate the pairwist dot product between all tops
and all bottoms, then all tops and all shoes, and all bottoms
and all shoes and add them together to obtain our final sim-
ilarity matrix, as shown in 6.

We then apply temperature-scaled cross entropy loss as
shown below to the outputs of the batch. There are N
classes— one for each outfit, and the output of the batch-
wise similarity calculation is of size N x N. So, the loss
function for a triplet of items is

exp(Simijk/T)
Zi,j,k exp(sim;;iT)

U(ti, by, s1) = (1)

T is a tunable temperature parameter, and a smaller
temperature parameter causes the distribution of similarity
scores to spread out further, while a larger temperature pa-
rameter causes them to contract. We experimented with
temperature parameters of 0.01, 0.1, and 1 and find that a
temperature of 0.1 works the best, which is in line with pre-
vious works.

3.2.5 Evaluation Metrics

Previous works evaluate the accuracy of their network by
actually deploying these outfits on commercial websites and
measuring consumer interaction with the outfits. However,
since we do not have access to such metrics, we instead
use a validation set of 1000 outfits that the model has never
seen before, and evaluate on the top-5 accuracy per batch.
However, it is unclear if this evaluation metric is the best
way to measure accuracy. Since items can be part of multi-
ple outfits, and items in outfits are often interchangeable, it
is possible that the network assigns high similarity scores to
clothing items that are very close to the “’correct” item in the
dataset but are not exactly the same. In this case, although
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the outfits generated are plausible, the accuracy might still
be low. To account for this problem, we use the top-5 ac-
curacy per batch instead of the top-1, and we also manually
check the outfits for plausibility.

3.3. Training Configurations

We train all models for 50 epochs, using Adam [6] as the
optimizer and learning rates of 5 x 10~5 when modifying
the pretrained networks and 10~* as the learning rate when
training the projection head. All models were trained on a
single nVidia GEForce RTX 3060 using the Pytorch library.

3.4. Beam Search

To generate real outfits using the model outfit embed-
dings, we use an efficient searching strategy known as beam
search to find the combination of top, bottom, and shoe with
the smallest possible distance between them (the optimal
outfit). Beam search works avoids searching over every
combination of outfit possibilities, which grows exponen-
tially. It works as follows: when given an input garment
(e.g., without loss of generality, a top), it searches over the
next category of garments (e.g. bottoms) and identifies the
closest k£ garments in that category that match. It then re-
peats this search over the last category of garments using
these top k item pairs as inputs.

Closeness is defined in this scenario as the sum of the
pairwise dot products of the outfit embeddings (see eq 1).
It can be defined differently, but we found that this method
works best.

D e e e e e e
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4. Results
4.1. Encoders

4.1.1 Frozen Encoder vs. Finetuned Encoder

We train a ResNet18 as the base model with the projection
head as described above; we either freeze the base model
or use the contrastive loss to update the weights of the pre-
trained model with a very small learning rate, to prevent
overfitting. We find that the two models perform approxi-
mately equally, with a top-5 accuracy rate of 40% with the
frozen encoder and 37% with the finetuned ResNet18. We
conclude that the ResNet18 finetuning may have been help-
ful with more data, since the number of outfits in our train-
ing set was small. We also test on smaller networks to de-
termine whether any overfitting was caused by complexity
of the model.

4.1.2 CLIP Embeddings

For our second experiment, we use the CLIP encoder with
frozen weights as the initial encoder and train the con-
trastive component. Here, we find that the top-5 accuracy
reaches 57%. As expected, CLIP outperforms both the
Resnet and the CNN as shown in 7, since CLIP uses both
text and image embeddings, while the other methods only
use image embeddings. Since we use different evaluation
metrics from other papers, which use fill-in-the-blank eval-
uation (where the model tries to predict a missing item in the
outfit) or consumer metrics, it is difficult to determine how
well StyleAl performs relative to other methods. However,
we find qualitatively that the top 5 outfits are quite similar,
meaning that the model is learning an accurate representa-
tion of outfits and clothing. Using the CLIP embeddings
far outperforms all of the other methods of embedding, as
shown in 9.
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Figure 7. Top 5 Accuracy with different encoders

4.1.3 Convolutional Neural Network

Finally, we train a small CNN from scratch with the ar-
chitecture shown in 3. The goal here is to use this CNN
as a baseline for what to expect when models are trained
from scratch. Additionally, results from the CNN can be
used to determine how the the outputs of the pretrained en-
coders contribute significantly to the model’s understanding
of outfits. Training the CNN from scratch performs signifi-
cantly worse than using either the CLIP embeddings or the
ResNet, as expected, validating that our approach to embed-
ding the clothing items is more effective. A comparison of
all of the encoders is shown in 7 and 8.
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4.2. Projection Head

We experiment with various projection head architec-
tures and outputs; namely, with the output size of the projec-
tion head embedding, which represents the components of
the outfits in the outfit feature space. We find that an output
embedding size of 512 performs the best, over output sizes
of 256, 128, and 64. With the frozen CLIP architecture,
an output embedding size of 512 had 57% accuracy, while
smaller embeddings performed worse (a 256-dimensional
output projection embedding had a 54% accuracy).

4.3. Batch Size

We find that the batch size has a very large impact on
the training performance. We vary the batch size between
32 and 64 and find that with a batch size of 64, the top-5
accuracy drops drastically to around 40% when using the
frozen CLIP as the encoder, as opposed to 57%. We believe
that this is due to the number of negative samples presented

to the model per outfit being polynomial in the input- i.e.
for a batch size of 64, the model is being presented with
over 12K negative samples per outfit. Since items between
different outfits may look extremely similar, the likelihood
that some of the “wrong” outfit items are very similar to the
correct outfit items grows larger as the batch size increases,
and therefore the model may not be able to learn these ef-
fectively.

4.4. Problems With Overfitting

As shown in figure 11, all of the models we trained ex-
perienced high rates of overfitting. However, in most cases,
this resulted in the validation losses increasing but the vali-
dation accuracies staying constant. We believe that the rea-
son for this peculiar overfitting is that currently, our loss
and accuracy functions optimize for a single correct an-
swer: i.e. any outfit that does not exactly contain the items
shown in the dataset is penalized in the loss. However, if
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Figure 10. Outfits on the left (a) are the “correct” outfits in the dataset, while outfits on the right (b) are incorrect yet closely matching

outfits predicted by the model.

Frozen Clip Loss

Training Loss Validation Loss

Figure 11. Training vs. Validation Loss for Frozen CLIP Encoder

the model truly learns a fashion sense, then it might gener-
ate perfectly acceptable outfits that do not exactly match the
dataset. Therefore, as stated before, this problem does not
have a ”single” correct answer, and forcing the model into
a paradigm that enforces a correct answer causes the loss
function to increase drastically. We believe that therefore,
the accuracy and loss metrics used in this paper provide a
good approximation of model performance, but that there
are other metrics that could be used instead that might re-
flect model performance more accurately. As seen in figure
10, even when the model predicts the wrong outfit, the pre-

dicted outfit is often extremely similar to the actual outfit.
Therefore, the loss and accuracy metrics could be further
improved to take this into account. For instance, instead of
solely optimizing by applying the temperature-scaled con-
trastive loss, we could also compute a similarity metric be-
tween the predicted generated embeddings with the original
generated embeddings to determine whether the model pre-
dicts similar enough clothing items, even if they are not ex-
actly the same. This would reduce the overfitting, since we
are no longer encouraging the model to memorize outfits,
and measure the model’s ability to predict plausible outfits



that do not exactly match the original.

5. Conclusion

We conclude that StyleAl, a novel self-supervised
method that uses contrastive learning to learn outfit compat-
ibility, performs well as a stylist and is able to learn not only
what features are crucial to understanding the representation
of a clothing item, but also how items fit together to create
cohesive and fashionable outfits. We develop a novel loss
function that maximizes compatibility between items of the
same outfit, and show that even when the model does not
predict the same outfit as shown in the dataset, it predicts
a plausible, fashionable outfit that shares many of the same
characteristics (color, texture, etc) with the ”correct” outfit
items. Our model is strengthened by separate item and out-
fit embeddings whose spaces do not overlap — a significant
improvement over prior work. Using beam search, we are
able to search over the space of clothing given to find the
optimal outfit given an item in the outfit. After experiment-
ing with various encoder and projection head architectures,
we obtain a 57% top-5 accuracy and even better qualita-
tive results. Our results indicate that our model architecture
and data embeddings are successful and have potential to be
useful in future work in this area.
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